skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Bowen, Jennifer"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 1, 2026
  2. Human civilization relies on estuaries, and many estuarine ecosystem services are provided by microbial communities. These services include high rates of primary production that nourish harvests of commercially valuable species through fisheries and aquaculture, the transformation of terrestrial and anthropogenic materials to help ensure the water quality necessary to support recreation and tourism, and mutualisms that maintain blue carbon accumulation and storage. Research on the ecology that underlies microbial ecosystem services in estuaries has expanded greatly across a range of estuarine environments, including water, sediment, biofilms, biological reefs, and stands of seagrasses, marshes, and mangroves. Moreover, the application of new molecular tools has improved our understanding of the diversity and genomic functions of estuarine microbes. This review synthesizes recent research on microbial habitats in estuaries and the contributions of microbes to estuarine food webs, elemental cycling, and interactions with plants and animals, and highlights novel insights provided by recent advances in genomics. 
    more » « less
  3. Iyer, Shankar Chandrashekar (Ed.)
    Salt marshes sit at the terrestrial–aquatic interface of oceans around the world. Unique features of salt marshes that differentiate them from their upland or offshore counterparts include high rates of primary production from vascular plants and saturated saline soils that lead to sharp redox gradients and a diversity of electron acceptors and donors. Moreover, the dynamic nature of root oxygen loss and tidal forcing leads to unique biogeochemical conditions that promote nitrogen cycling. Here, we highlight recent advances in our understanding of key nitrogen cycling processes in salt marshes and discuss areas where additional research is needed to better predict how salt marsh N cycling will respond to future environmental change. 
    more » « less
  4. Glass, Jennifer B. (Ed.)
    ABSTRACT Sulfur-cycling microbial communities in salt marsh rhizosphere sediments mediate a recycling and detoxification system central to plant productivity. Despite the importance of sulfur-cycling microbes, their biogeographic, phylogenetic, and functional diversity remain poorly understood. Here, we use metagenomic data sets from Massachusetts (MA) and Alabama (AL) salt marshes to examine the distribution and genomic diversity of sulfur-cycling plant-associated microbes. Samples were collected from sediments underSporobolus alterniflorusandSporobolus pumilusin separate MA vegetation zones, and underS. alterniflorusandJuncus roemerianusco-occuring in AL. We grouped metagenomic data by plant species and site and identified 38 MAGs that included pathways for sulfate reduction or sulfur oxidation. Phylogenetic analyses indicated that 29 of the 38 were affiliated with uncultivated lineages. We showed differentiation in the distribution of MAGs between AL and MA, betweenS. alterniflorusandS. pumilusvegetation zones in MA, but no differentiation betweenS. alterniflorusandJ. roemerianusin AL. Pangenomic analyses of eight ubiquitous MAGs also detected site- and vegetation-specific genomic features, including varied sulfur-cycling operons, carbon fixation pathways, fixed single-nucleotide variants, and active diversity-generating retroelements. This genetic diversity, detected at multiple scales, suggests evolutionary relationships affected by distance and local environment, and demonstrates differential microbial capacities for sulfur and carbon cycling in salt marsh sediments. IMPORTANCESalt marshes are known for their significant carbon storage capacity, and sulfur cycling is closely linked with the ecosystem-scale carbon cycling in these ecosystems. Sulfate reducers are key for the decomposition of organic matter, and sulfur oxidizers remove toxic sulfide, supporting the productivity of marsh plants. To date, the complexity of coastal environments, heterogeneity of the rhizosphere, high microbial diversity, and uncultured majority hindered our understanding of the genomic diversity of sulfur-cycling microbes in salt marshes. Here, we use comparative genomics to overcome these challenges and provide an in-depth characterization of sulfur-cycling microbial diversity in salt marshes. We characterize communities across distinct sites and plant species and uncover extensive genomic diversity at the taxon level and specific genomic features present in MAGs affiliated with uncultivated sulfur-cycling lineages. Our work provides insights into the partnerships in salt marshes and a roadmap for multiscale analyses of diversity in complex biological systems. 
    more » « less
  5. This is a descriptive, tabular dataset of publications related to microbial or genomic research conducted within PIE. Assession numbers for genetic sequences generated from PIE samples are provided where available, followed by a very brief description of analysis type and study objectives. Sampling locations within PIE, sampling dates, and habitat type (sea water, fresh water, sediment, marsh) are also given. Environmental data are included in some publications and are listed here (if brief) or availability is described. Links to sequence archives are given in Methods. 
    more » « less
  6. Free, publicly-accessible full text available December 10, 2025
  7. null (Ed.)
    Abstract Excess reactive nitrogen (N) flows from agricultural, suburban, and urban systems to coasts, where it causes eutrophication. Coastal wetlands take up some of this N, thereby ameliorating the impacts on nearshore waters. Although the consequences of N on coastal wetlands have been extensively studied, the effect of the specific form of N is not often considered. Both oxidized N forms (nitrate, NO3−) and reduced forms (ammonium, NH4+) can relieve nutrient limitation and increase primary production. However, unlike NH4+, NO3− can also be used as an electron acceptor for microbial respiration. We present results demonstrating that, in salt marshes, microbes use NO3− to support organic matter decomposition and primary production is less stimulated than when enriched with reduced N. Understanding how different forms of N mediate the balance between primary production and decomposition is essential for managing coastal wetlands as N enrichment and sea level rise continue to assail our coasts. 
    more » « less
  8. In this dataset, we used a controlled flow-through reactor (FTR) experiment to test the role of nitrate as an electron acceptor, and its effect on organic matter decomposition and the associated microbial community in salt marsh sediments. Organic matter decomposition significantly increased in response to nitrate, even at sediment depths typically considered resistant to decomposition. The use of isotope tracers suggests this pattern was largely driven by stimulated denitrification. Nitrate addition also significantly altered the microbial community and decreased alpha diversity, selecting for taxa belonging to groups known to reduce nitrate and oxidize more complex forms of organic matter. Fourier Transform-Infrared Spectroscopy further supported these results, suggesting that nitrate facilitated decomposition of complex organic matter compounds into more bioavailable forms. Taken together, these results suggest the existence of organic matter pools that only become accessible with nitrate and would otherwise remain stabilized in the sediment. The existence of such pools could have important implications for carbon storage, since greater decomposition rates as N loading increases may result in less overall burial of organic-rich sediment. Given the extent of nitrogen loading along our coastlines, it is imperative that we better understand the resilience of salt marsh systems to nutrient enrichment, especially if we hope to rely on salt marshes, and other blue carbon systems, for long-term carbon storage. 
    more » « less